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Abstract 20 

Temporal rainfall disaggregation is an important tool to obtain high-resolution rainfall data 21 

which is needed in many fields of hydrology and water resources management. The 22 

multiplicative random cascade model can be used for temporal rainfall disaggregation of daily 23 

time series. A resampling algorithm is introduced to implement spatial consistence in 24 

disaggregated time series. Spatial consistence is assumed to be represented by four bivariate 25 

and distance-dependent rainfall characteristics that complement each other. Relative diurnal 26 

cycles of the disaggregated time-series are resampled with the aim to reproduce these spatial 27 

characteristics while preserving the structure generated by the cascade model. Also, to 28 

achieve a final resolution of 1 hour the traditional cascade model has been modified. A 29 

modification called uniform splitting with a branching number of 3 in the first step is 30 

introduced. Results are compared with observations and an approach by Güntner et al. (2001) 31 

called diversion. In total 22 recording stations in Northern Germany with hourly resolution 32 

were used for the validation of the disaggregation procedure, starting with daily values. 33 

Investigation areas are two catchments considering different station densities. 34 

The results show that for the disaggregation, errors of time series characteristics between 3 % 35 

and 12 % occur. The non-exceedance curves of rainfall intensities are slightly overestimated. 36 

Extreme values are well represented. The uniform splitting method outperforms the diversion 37 

method. Spatial rainfall characteristics can be reproduced by the simulating annealing 38 

algorithm. However, with an increasing number of stations the reproduction performance 39 

declines for some rainfall characteristics. Non-exceedance curves of areal rainfall based on 40 

disaggregated and not resampled time series are generally underestimated. By application of 41 

the resampling algorithm, a better performance regarding the spatial characteristics can be 42 

achieved. The presented resampling algorithm has the potential to be used for implementing 43 

spatial consistence also for time series generated by other disaggregation models.44 
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Introduction 45 

Rainfall time series with a high temporal resolution are needed in many fields of hydrology 46 

and water resources management, e.g. urban hydrology (Licznar et al., 2011), flood risk 47 

assessment (Koutsoyiannis & Langousis, 2011) or erosion investigations (Jebari et al., 2012). 48 

In most cases these time series are short and the network density of the recording stations is 49 

low. Unfortunately, many applications require long time series and a dense network of rainfall 50 

stations. 51 

Usually, non-recording station networks have a much higher density and a longer observation 52 

period. Time series information of the recording stations could be used to disaggregate those 53 

of the non-recording stations with the aim to produce a data set with long time series and a 54 

sufficient temporal resolution. 55 

A method for disaggregation is the mutliplicative random cascade model, which was 56 

developed and applied originally in the field of turbulence theory (Mandelbrot, 1974). For 57 

rainfall disaggregation, the cascade model can be used either to increase the spatial resolution 58 

of rainfall fields (e.g. Gupta and Waymire, 1993) or to increase the temporal resolution 59 

(Olsson, 1998). 60 

One problem with multiplicative cascade models for temporal disaggregation is their 61 

restriction to univariate cases, so that multisite application is not possible and has not been 62 

done so far to the authors’ knowledge. The main objective of this work is to introduce a 63 

method for multisite applications considering spatial consistence in rainfall characteristics. 64 

The disaggregation of time series without consideration of surrounding stations leads to 65 

unrealistic spatial patterns of rainfall. However, the existence of a spatial correlation of 66 

rainfall is indisputable and the question arises: how can spatial consistence be implemented 67 

after the disaggregation process? Simulated annealing is tested here, which is a resampling 68 
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algorithm, introduced for point rainfall generation by Bardossy (1998) and applied for 69 

multisite rainfall generation by Haberlandt et al. (2008). The idea is to resample relative 70 

diurnal cycles of the disaggregated time series under the restriction of keeping the structure 71 

constructed by the cascade model. The aim is to fulfil different spatial characteristics derived 72 

from observed time series. These characteristics are distance-dependent and bivariate and 73 

were former used in Wilks (1998), Haberlandt et al. (2008) and Breinl et al. (2013, 2014). The 74 

reproduction of spatial dependencies in the disaggregated time series is the first novelty of 75 

this investigation. 76 

During recent years different types of cascade models have been developed, which can be 77 

classified in different ways. According to their principles of mass conservation, cascade 78 

models are divided into either micro-canonical or canonical cascade models. Micro-canonical 79 

models conserve the rainfall amount in each time step exactly, i.e. the initial time series could 80 

be reconstructed by aggregating the disaggregated time series. A second attribute of micro-81 

canonical models regards parameter estimation. All parameters can be extracted directly from 82 

the data by a reverse application of the cascade model to the observations of recording 83 

stations (Carsteanu and Foufoula-Georgiou, 1996). Canonical cascade models on the other 84 

hand conserve rainfall amounts only on average for each time step. Only for the whole time 85 

series is an exact conservation achieved. A detailed comparison can be found in Lombardo et 86 

al. (2012). For these reasons, canonical cascade models belong to downscaling methods and 87 

micro-canonical models to disaggregation methods (Koutsoyiannis and Langousis, 2011). 88 

Another classification is according to the scale-dependency of parameters used in the cascade 89 

model. Bounded cascade models (Marshak et al., 1994) use a special parameter set for each 90 

cascade level. Due to this, the random process becomes smoother on smaller time scales. For 91 

unbounded cascade models, one parameter set is applied independently of the cascade level 92 
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under the assumption of parameter scale-invariance in a certain range. A discussion about 93 

scale-dependency of the parameters can be found in Serinaldi (2010). Although 94 

Veneziano et al. (2006) identified scale-dependency, Rupp et al. (2009) showed only a slight 95 

improvement using scale-variant parameters if the cascade model is applied over a small 96 

range of disaggregation levels. One advantage of scale-invariance is the possibility to estimate 97 

the parameters by aggregation of the time series which are used for later disaggregation. 98 

The branching number b in a cascade model gives the number of finer time steps to which the 99 

rainfall is distributed from one coarser time step. The choice of parameter scale-dependence 100 

determines in combination with the branching number b the number of parameters for the 101 

cascade model. An unbounded cascade with b=2 is the most parameter parsimonious version 102 

of the cascade model. However, the final temporal resolution of 1.5 or 0.75 hours if starting 103 

with daily values can be a problem, since a wide variety of applications need hourly input. 104 

Güntner et al. (2001) tried to overcome this issue with a diversion at the 5
th

 disaggregation 105 

level (0.75 h) into three time intervals and subsequently aggregating four of the intervals into 106 

hourly values. However, this destroys the structure created by the cascade model, although 107 

results look satisfactory for the investigated data. Lisniak et al. (2013) have chosen a 108 

branching number b=3 for the first disaggregation step which continues to resolutions of 8, 4, 109 

2 and 1 h. Their cascade model was bounded and parameters were additionally estimated for 110 

different atmospheric circulation patterns. This resulted in a high number of parameters 111 

giving better performance for a calibration period using the circulation pattern, but with no 112 

improvement for the validation period. 113 

Another research question of this study is: how might the cascade model be extended to 114 

derive hourly time series starting from a source of daily values and yet still retaining the 115 

cascade structure intact? A possible answer to this question is the second novelty of our study. 116 
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We introduce a more parameter parsimonious alternative for rainfall disaggregation to obtain 117 

the aspired temporal resolution by applying the structure of a cascade model. 118 

The paper is organized as follows. In section 2 the investigation area and rainfall stations are 119 

described. In section 3 the applied methods are discussed, whereby the first part includes the 120 

possibilities of rainfall disaggregation to derive hourly time steps. The second part concerns 121 

the implementation of spatial consistence in these time series. In section 4 the results for both 122 

time series disaggregation and resampling algorithm are shown and discussed. Summary and 123 

outlook are given in section 5. 124 

Data 125 

The stations used for this investigation are located in and around the Aller-Leine river basin 126 

(15703 km², see Fig. 1) which covers a large southern portion of the federal state of Lower 127 

Saxony in Germany. The river basin can be divided into two different regions, the flatland 128 

around the Lüneburger Heide in the north and the Harz middle mountains in the south. The 129 

Harz mountains have altitudes up to 1141 m and areas with average annual precipitation 130 

greater than 1400 mm. According to the Köppen-Geiger climate classification, a temperate 131 

oceanic climate exists in the north of the study area, while a temperate continental climate 132 

exists in the south (Peel et al., 2007). Additionally, the Upper Leine catchment located in the 133 

south of the study area with a size of 992 km² is considered. This is the headwater 134 

subcatchment of the Aller-Leine river basin. 135 
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 136 

Fig. 1. Location of the Aller-Leine river basin with Upper-Leine subcatchment, recording rainfall stations and 137 

topography. The location of the river basin within Germany is shown in the upper right map. 138 

 139 

In Fig. 1, 22 recording stations (group A and B) from the German Weather Service DWD and 140 

Meteomedia AG are shown. For these stations long time series with a temporal resolution of 141 

one hour or finer are available. Recording stations of group A are rainfall stations used during 142 

the resampling procedure. For the validation of the resampling process it would be optimal to 143 

have time series with almost no missing values. A uniform time period from 15 December 144 

2002 to 30 January 2007 was used. Recording stations of group B were used additionally for 145 

the estimation of spatial rainfall characteristics described in section 3. For the description of 146 

the time series, overall characteristics like average intensity and fraction of wet hours, but also 147 

event characteristics like dry spell duration, wet spell duration and wet spell amount, are used. 148 
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Events are defined by a minimum of one dry hour before and after the rainfall occurrence. 149 

These characteristics and further information of the rainfall stations of group A are given in 150 

Table 1. If for any other purpose different time series lengths are used it is mentioned in the 151 

text. 152 

Table 1. Attributes of rainfall stations of group A and time series characteristics for a temporal resolution of 153 

1 hour 154 

Name Short ID 
Altitude 

[m.a.s.l.] 

Mean annual 

precipitation 

[mm] 

Fraction of 

wet hours 

[%] 

Average wet 

spell 

duration [h] 

Average wet 

spell amount 

[mm] 

Average dry 

spell 

duration [h] 

Average 

intensity 

[mm/h] 

Hambuehren 1 38 635.0 11.1 2.7 1.9 17.9 0.70 

Wetze/Northeim 2 122 642.7 12.3 2.5 1.7 19.5 0.67 

Braunschweig-Voel. 3 81 607.7 10.0 2.4 1.9 23.3 0.79 

Stadthagen 4 62 622.6 11.1 2.4 1.7 17.3 0.71 

Soltau 5 76 799.6 18.1 3.2 2.0 18.3 0.63 

Torfhaus (Harz) 6 805 1 325.9 10.9 3.7 3.2 15.3 0.86 

Leinefelde 7 356 734.5 8.8 2.6 2.0 20.5 0.78 

Wolfsburg-Autostadt 8 61 591.3 14.5 2.5 1.7 21.6 0.68 

Göttingen 9 167 637.7 11.7 2.7 1.7 19.7 0.63 

 155 

Methods 156 

To provide an overview of the applied methods and resulting data sets, the general steps of 157 

the study are presented as a flow chart in Fig. 2. Observed time series are disaggregated with 158 

two  modifications of the cascade model: diversion (DIV) and uniform splitting (US) (see 159 

3.1). The disaggregated time series are resampled with a simulated annealing algorithm (see 160 

3.2). Hereby a one-step and a two-step approach exist. The two-step approach is only applied 161 

for the Aller-Leine river basin. 162 
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 163 

Fig. 2. Flowchart of the applied methods, their modifications (in circles) and resulting datasets (boxes). Data sets 164 

indicated by a * are only derived for the Aller-Leine river basin 165 

 166 

Cascade Model 167 

The principle of the cascade model is illustrated in Fig. 3. A time step from a coarser time 168 

level is disaggregated into two finer time steps of equal duration. The number of boxes 169 

generated from the coarser time level is called the branching number, which here is b = 2. In 170 

this investigation, a micro-canonical, unbounded cascade model is used (see Sect. 1). 171 

The rainfall volume V of the coarser time step is multiplied with the multiplicative weights W1 172 

and W2 to obtain the rainfall volumes of the finer time step. The sum of W1 and W2 is equal to 173 

1 in each split, i.e. they are not independent of each other. Overall there are three possibilities 174 

of how the rainfall volume can be split (Eq. (1)) during the disaggregation: 175 

1 2

0 and 1         with P(0/1)

W , W 1 and 0         with P(1/0)

x and 1 x   with P(x/(1-x)); 0<x<1




 
 

 ,   (1) 176 
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where P is the probability for each splitting. A splitting with the probability P(1/0) means that 177 

the whole rainfall is assigned to the first time step (W1 = 1) and no rainfall (W2 = 1 - W1 = 0) 178 

is assigned to the second time step. With the probability P(0/1), splitting is achieved vice 179 

versa. The third possibility is a x/(1-x)-splitting that redistributes the rainfall volume over both 180 

time steps. Here x is defined as 0 < x < 1 and represents the relative fraction of the rainfall 181 

volume which is assigned to the first time step. Considering x as a random variable for all 182 

disaggregation steps, a probability density function f(x) with the probabilities for each value 183 

of x can be estimated. 184 

 185 

Fig. 3. Multiplicative cascade model (after Olsson, 1998) 186 

 187 

Given f(x) and the three probabilities P(0/1), P(1/0) and P(x/(1-x)), the basic version of the 188 

cascade model requires only four parameters. Olsson (1998) and Güntner et al. (2001) 189 

identified parameter dependencies on the position and the rainfall volume of each time step. 190 

Position of a time step is the relation to the wetness of the neighboring time steps and was 191 

used before by e.g. Buishand (1977). Olsson (1998) introduced a differentiation into four 192 

classes, which was adopted by other authors (e.g. Lisniak et al., 2013): Starting boxes 193 
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(preceded by a dry time step, succeeded by a wet time step~dry-wet-wet), enclosed boxes 194 

(wet-wet-wet), ending boxes (wet-wet-dry) and isolated boxes (dry-wet-dry). 195 

In addition, the rainfall volume of a time step is considered. Olsson (1998) assumed that the 196 

parameters differ for higher and lower volumes and determined for every position class a 197 

volume threshold to create two volume classes. The chosen threshold was the mean rainfall 198 

over all time steps of this position. Güntner et al. (2001) tested the median as a more suitable 199 

volume threshold. The advantage of using the median is that the number of occurrences in 200 

both volume classes will be equal. However, using the mean led to better results and hence 201 

was used here. 202 

For f(x), empirical distribution functions were used. According to Güntner et al. (2001), an 203 

acceptable fitting of theoretical distribution functions is barely possible for every combination 204 

of position-volume-classes. 205 

Altogether the model uses 32 parameters (4 basic parameters ∙ 4 position classes ∙ 2 volume 206 

classes). For this study, these parameters were estimated by aggregating high-resolution time 207 

series and counting the number of occurrences for the different types of splitting for each 208 

volume-position-class. The estimation of f(x) was carried out similarly. In general, no high-209 

resolution time series exist at the point of interest, therefore the parameters must be estimated 210 

in a different way. One solution is to estimate the parameter set at the nearest station and then 211 

apply the parameter set at the point of interest (Koutsoyiannis et al., 2003). If the parameters 212 

are supposed to be independent from scale, they can also be estimated by aggregating the 213 

daily values at the point of interest and then applied for disaggregation of these daily values. 214 

The disaggregation procedure using the multiplicative cascade model with a branching 215 

number b = 2 and starting with daily values, results in a temporal resolution of 1.5 h or 216 

0.75 h. However in most cases hourly rainfall data is needed. Güntner et al. (2001) analyzed 217 
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different methods to derive a final temporal resolution of 1 h. To overcome this problem they 218 

tested different variants and identified the “diversion” (called the E24/0.75/1-experiment) to 219 

deliver best results. For the diversion, time steps at the 5
th

 disaggregation level (Δt = 0.75 h) 220 

are split uniformly into three time steps with Δt = 0.25 h, and afterwards four of these time 221 

steps are aggregated to achieve a final resolution of Δt = 1 h. 222 

Here, another variant similar to Lisniak et al. (2013) is introduced, the so called “uniform 223 

splitting”. Starting at a daily time scale in the first disaggregation step, a branching number of 224 

b = 3 is chosen. Additionally needed parameters are the probabilities for one (P(0/0/1)) and 225 

for two wet intervals (P(0/
 

 
 

 

 
   of the three 8 h-intervals of a day. The probability for three 226 

wet 8 h-intervals can be determined by P(
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) = 1-P(0/0/1)-P(0/

 

 
/
 

 
). The following 227 

assumptions were made: 228 

1. The parameter P(0/0/1) and P(0/
 

 
/
 

 
) influence only the number of wet boxes, not 229 

their position. The position of each wet box is assigned randomly. 230 

 2. The rainfall volume is uniformly split to all boxes which are defined as wet. 231 

The possibilities of splitting during the first disaggregation step are shown in Eq. (2): 232 
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1 2 3

1, 0 and 0      with P(0/0/1)

0,1and 0      with P(0/0/1)

0, 0 and 1     with P(0/0/1)

1 1 1 1
W , W , W ,  and 0 with P(0/ / )

2 2 2 2

1 1 1 1
, 0 and  with P(0/ / )

2 2 2 2

1 1 1 1
0,  and  with P(0/ / )

2 2 2 2

1 1 1 1 1
,  and  with P( /

3 3 3 3 3



1
/ )

3





















     (2) 233 

For the second and all following disaggregation steps, b = 2 is used, so that time series with 234 

resolutions of 4 h, 2 h and 1 h are produced.  235 

The additional parameters can be estimated by aggregating recording stations, e.g. starting at 236 

Δt = 1 h leads, to 2 h, 4 h and 8 h. The probabilities P(
 

 
/
 

 
/
 

 
), P(0/

 

 
/
 

 
) and P(0/0/1) are the 237 

same for starting, enclosed, ending and isolated positions. 238 

In contrast, the separation into volume classes is retained. Without a second volume class, the 239 

probability P(0/0/1) is the same for both small and high rainfall amounts in a day. Fig. 4 240 

shows the number of wet 8 h-intervals of a day in relation to the daily rainfall amount for two 241 

stations with a time series length of approximately 18 years. It can be seen that for higher 242 

daily rainfall amounts, the probability of a higher number of wet 8 h-intervals increases. 243 
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 244 

Fig. 4. Daily rainfall amount and corresponding number of wet 8 h-intervals for the rain gauges Leinefelde and 245 

Magdeburg. The red line is the volume threshold defined as the quantile q0.998. 246 

 247 

For this study a quantile q0.998 was chosen as volume threshold. The quantile was identified in 248 

a way to represent the different probability of wet 8 hours-intervals of the two volume classes. 249 

The probabilities P(
 

 
/
 

 
/
 

 
), P(0/

 

 
/
 

 
) and P(0/0/1) of the upper and lower volume class differ 250 

strongly using this calibrated threshold. 251 

For the evaluation of diversion and uniform splitting, time series of recording stations were 252 

aggregated to daily values. The disaggregation products of these two methods were computed 253 

and then compared to the observed time series with 1 h-resolution. The disaggregation is a 254 

random process and, depending on the initialization of the random number generator, leads to 255 

different results. To cover this random behavior, a certain number of disaggregation runs has 256 

to be performed. We found, that after 80 disaggregation runs the average values of the main 257 

characteristics (see Table 3) are not changing significantly by an increasing number of 258 

disaggregation runs. Accordingly, 80 disaggregations were carried out for each method.  259 
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Table 3. Relative error of characteristics for all recording stations of group A using diversion (Div) and uniform 260 

splitting (US) in comparison with characteristics of observed time series (based on 80 disaggregations for each 261 

method and station) 262 

Rainfall characteristic 
r [%] RRSE [%] MAE  

Div US Div US Div US 

wet spell duration [h] 40 -12 43 17 1.1 0.5 
     standard deviation 12 -29 25 30 0.7 0.9 
     skewness -32 -26 32 27 1.3 1.1 

wet spell amount [mm] 12 -9 26 16 0.5 0.4 
     standard deviation -4 -18 17 24 0.8 1.1 
     skewness -19 -19 22 22 1.4 1.4 

dry spell duration [h] 10 -6 15 12 2.6 2.3 
     standard deviation 6 -7 11 11 4.1 4.5 
     skewness -5 9 8 10 0.4 0.5 

fraction of dry intervals -7 -3 5 3 0.0 0.0 

average intensity [mm/h] -20 4 20 9 0.1 0.1 

 263 

 264 

Implementing spatial consistence using resampling 265 

The multiplicative random cascade model is disaggregating the time series of one rainfall 266 

station without consideration its spatial relationship with surrounding stations. This would 267 

lead to errors in areal rainfall estimation if precipitation is used for instance as input for 268 

hydrological models. Spatially connected rainfall events are disaggregated and take place at 269 

different time steps at different stations, so areal rainfall is assumed to be underestimated. The 270 

main idea is to resample relative diurnal cycles using a simulated annealing algorithm 271 

(Kirkpatrick et al., 1983; Aarts and Korst, 1965) to implement spatial consistence. Simulated 272 

annealing is a non-linear optimization method that minimizes an objective function with the 273 

ability to find the global minimum. 274 

First it has to be defined which criteria can be used in the objective function to describe the 275 

spatial characteristics of rainfall time series z. For this purpose the following three bivariate 276 

characteristics were chosen, which can be calculated from hourly rainfall time series: 277 
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 1. Probability of occurrence 278 

The first characteristic Pk,l describes the probability of rainfall occurrence at two stations k 279 

and l at the same time: 280 

                  
   

 
   ,       (3) 281 

where n is the total number of non-missing observation hours at both stations k and l, and n11 282 

represents the number of simultaneous rainfall occurrence at both stations. 283 

 2. Pearson’s coefficient of correlation 284 

To describe the relationship between simultaneously occurring rainfall at two stations k and l 285 

the Pearson’s coefficient of correlation is used, which is a measure of the linear relation 286 

between both rainfall time series (Eq. (4)). This coefficient was used for e.g. multisite rainfall 287 

generation before by Breinl et al. (2014): 288 

     
          

                  

 , zk > 0, zl > 0 .     (4) 289 

 3. Continuity measure 290 

The third bivariate characteristic is the continuity measure according to Wilks (1998). It 291 

compares the expected rainfall amount at one station for times with and without rain at the 292 

neighbouring station (E. is the expectation operator): 293 

     
               

               
  .       (5) 294 

It is possible to estimate prescribed values of these characteristics as functions of the 295 

separation distance between two stations from observed data. For the Aller-Leine catchment, 296 

these characteristics were estimated for all available stations of group A and B. For the 297 
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parameter estimation the full length of all time series were used, not only the simultaneous 298 

observation period. The results are shown in Fig. 5. 299 

 300 

Fig. 5. Estimated spatial characteristics as functions of the separation distance with regression lines used as input 301 

for the objective function (please note the different scale of y-axis for the two coefficients of correlation) 302 

 303 

The correlation coefficient depends strongly on the analyzed rainfall volumes for the 304 

investigated time series. Fig. 5 shows the correlation for values below and above a threshold 305 

of 4 mm. The value of 4.0 mm was identified as the threshold at which the spatial correlation 306 

becomes very weak. Since lower rainfall volumes are supposed to originate from advective 307 

rainfall events with large spatial extensions, their spatial correlation is much stronger than for 308 

higher rainfall volumes, which may occur during convective rainfall events with a limited 309 

spatial extension. Hence, two correlation coefficients for values below (ρk,l,≤4 mm) and above 310 

4 mm (ρk,l,>4 mm) were used. 311 
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In order to define prescribed values for the objective function suitable functions are required 312 

to relate these characteristics to the distance. Here, logarithmic regression curves give the 313 

highest coefficient of determination and are chosen for all three characteristics.  314 

All four characteristics are summarized in a bivariate objective function: 315 

                  
                       

                      
                

   (6) 316 

The parameters indicated by * are the prescribed values for two stations, and the other 317 

parameters are the actual values. The weights w1, w2, w3 and w4 are necessary to consider the 318 

importance and to adjust the scale of the rainfall characteristics. 319 

After disaggregation, the time series with an hourly resolution have to be resampled to 320 

implement spatial consistence. There are two conditions which need to be considered for 321 

resampling: 322 

1. The structure of the disaggregated time series should be conserved, with different 323 

position and volume classes produced by the cascade model. 324 

2. The rainfall amount of each day should be conserved. One advantage of the micro-325 

canonical cascade model is the exact conservation of mass in each time step. Hence a 326 

swap of absolute values between two days is not possible. 327 

The aim of the simulated annealing is to modify all disaggregated and unchanged time 328 

series N (called set U) under the above mentioned conditions to receive disaggregated, 329 

changed time series with spatial consistence (called set R). Simulated annealing is carried out 330 

as follows: 331 

 332 

 333 
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1. For time series k=1,…, N, relative diurnal cycles of each wet day are 334 

constructed. The relative diurnal cycles are split into x subsets, with x=1,…, S 335 

for each combination of position and volume class, In case of the uniform 336 

splitting an additional subset for all values above q0.998 exists. 337 

2. A time series k from set U is drawn randomly. If set U is empty the procedure 338 

is ended. 339 

3. All time series from set R with l=1,…, M are taken as reference time series. If 340 

set R is empty, time series k is moved from the set U to set R and the algorithm 341 

returns to step 2, otherwise it proceeds to step 4. 342 

4. A subset x of k is identified randomly, where every subset with its number of 343 

elements m has the probability: 344 

      
  

   
 
   

        (7) 345 

5. Two days are drawn randomly from the subset identified in step 4 and their 346 

diurnal cycles are swapped.  347 

6. The value for the objective function Ok,l (Eq. (6)) is updated. An average 348 

objective function value Ok is calculated considering all neighboring stations 349 

from set R: 350 

     
 

   
     

 
          (8) 351 

7. The new value of the objective function is compared with the former value 352 

obtained before the actual swap. The swap is accepted if Onew < Oold. 353 

8. If Onew ≥ Oold the swap is accepted with the probability π: 354 

        
         

  
 ,       (9) 355 
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where Ta is the annealing temperature. This parameter regulates the probability 356 

of accepting bad swaps. By the acceptance of bad swaps local optima can be 357 

avoided as final solution and the global optimum can be identified. Decreasing 358 

this parameter during the simulated annealing procedure (see further steps) the 359 

probability for accepting non-improving swaps is also decreasing, allowing a 360 

convergence to a global optimum. 361 

9. Steps 4-8 are repeated K times. 362 

10. The annealing temperature is reduced by: 363 

             with           (10) 364 

  After reducing the temperature, the algorithm proceeds to step 4. 365 

11. Steps 9 and 10 are repeated until the algorithm converges regarding resampling 366 

of the station k. 367 

12. Station k is removed from set U and added to set R. The algorithm returns to 368 

step 2 for resampling the next station. 369 

The algorithm explained above is theoretically not limited to a certain number of stations. 370 

However, with an increasing number of stations, it becomes more difficult to reach a final 371 

small objective function value. Every new disaggregated time series from set U has to be 372 

fitted to all already resampled time series from set R. Due to the limited amount of available 373 

diurnal cycles, a good fitting becomes increasingly difficult with every newly added time 374 

series. An overview of the number of diurnal cycles for station 3169 is given in Table 2. For 375 

the upper volume class of the isolated boxes, only 28 diurnal cycles are available to swap, 376 

which is a very low number in comparison to the amount of diurnal cycles of lower volume 377 

classes for all positions. This poses a serious problem if a large area with many stations needs 378 

to be considered. With an increasing areal extension of the study area, the scale and the 379 
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purpose of the areal rainfall has to be questioned. For some applications, a good fit between 380 

all rainfall stations, some of them situated remotely from each other, may not be essential, and 381 

a resampling of the rainfall time series of a single subcatchment or small groups would be 382 

sufficient. 383 

A possible solution could be the application of a multi-step approach, also called a nested 384 

approach proceeding from large to small scales. Hereby a subset of all time series is 385 

resampled in a first step. In a second step, the already resampled stations are used as reference 386 

time series (so k1 is fixed) and other, non-resampled stations will be resampled following the 387 

11-point-scheme described before. 388 

Table 2. Number of diurnal cycles for each position and volume class for station 3169 389 

Position 
Volume class 

Lower Upper 

Starting 126 52 

Enclosed 205 114 

Ending 124 54 

Isolated 84 28 

 390 

For a better understanding, the station IDs from Fig. 1 are used to illustrate the method. In the 391 

first step, a subset U1={station 1, 2, 3} is chosen from set U={1, 2, 3, 4, 5, 6, 7, 8} 392 

representing the large scale. The stations were chosen to cover all parts of the study area, the 393 

North (station 1), the South (station 2) and the East (station 3). This subset is used instead of 394 

set U in the resampling procedure. The resampled time series of these stations are used as 395 

donor time series for nearby stations in the next step focusing on smaller scales. 396 

For the second step, the resampled time series of set R={1, 2, 3} are distributed on t new 397 

subsets U1-t, where t is the number of elements of the set R (t = 3). To every new subset U1-t, 398 

disaggregated, not resampled time series are added (U1-1 = {1, 4, 5}, U1-2 = {2, 6, 7}, U1-399 

3 = {3, 8}). For every subset U1-t, the resampling procedure is applied independently from 400 
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the other subset with the restriction that the already resampled time series from set R is the 401 

reference used during the simulated annealing (k1 = 1 for U1-1, k1=2 for U1-2, k1=3 for U1-402 

3)). This approach could be continued for more steps, but here only a two-step approach is 403 

applied. 404 

For the estimation of the areal rainfall, the inverse distance method was chosen. This method 405 

is based on the assumption that rainfall from two stations with a closer distance is more alike. 406 

Accordingly, the interpolation result is a linear combination of surrounding observations with 407 

weights being inversely proportional to the square distance between the observations and the 408 

point of interpolation (Goovaerts, 2000). 409 

 410 

Results & Discussion 411 

Rainfall characteristics of point disaggregation 412 

For the rainfall disaggregation, two versions of the cascade model were analyzed: diversion of 413 

Güntner et al. (2001) and uniform splitting. A comparison of the characteristics of 414 

disaggregated time series (Dis) using both methods with the observations (Obs) can be seen in 415 

Table 3 regarding the relative error r (11), the root relative squared error RRSE (12) and the 416 

mean absolute error MAE (13). The objective criteria were calculated for each station over all 417 

realizations n of the disaggregation and averaged afterwards over all stations. 418 
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All three objective criteria lead to similar relations between the results for diversion and 422 

uniform splitting. For the further interpretation only the relative error is used, since this 423 

criterion has the advantage to draw conclusions about over- or underestimation of the rainfall 424 

characteristics. 425 

For the diversion, the average wet and dry spell durations are overestimated by 40 % and 426 

10 % respectively. The average intensity is underestimated by 20 %. This could be caused by 427 

the last two steps of the diversion approach. In some cases the duration of wet intervals is 428 

extended by the elimination of short dry periods. Due to the reduction and removal of short 429 

dry intervals, both event characteristics are overestimated. These results are comparable to 430 

Güntner et al. (2001), who found for Brazilian stations an overestimation of wet spell 431 

duration, but only by 10 %, instead of the 40 % in this study. The smaller error could be 432 

caused by the mean dry spell duration that was much longer for Brazilian time series. 433 

Although wet and dry spell durations are overestimated, only small deviations can be 434 

recognized for the fraction of dry intervals of the whole time series. 435 

Uniform splitting only slightly underestimates wet and dry spell durations by 12 % and 6 % 436 

respectively. One reason could be the random positions of the wet 8 h-intervals in a day 437 

which causes artificial small rainfall events with dry periods in between, which are shorter 438 

than the mean observed dry spell duration. Average rainfall intensities are overestimated and 439 

the fraction of dry intervals are underestimated, both by less than 5 %. 440 

In addition to the basic event characteristics of the time series, non-exceedance curves of 441 

rainfall intensity based on hourly time steps were analyzed. Therefore, all wet hours from 80 442 

disaggregations using diversion and uniform splitting were extracted and plotted as non-443 

exceedance curves in Fig. 6. Furthermore, the observed values for station Wetze/Northeim are 444 

displayed. It can be seen that the diversion underestimates the observations in the range from 445 
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0 % to 98 %. This represents hourly rainfall amounts up to about 4 mm and is indicated by an 446 

average underestimation of 20 % of the average rainfall intensity. Uniform splitting shows a 447 

good fit from 35 % to 93 %, which represents the range from 0.1 mm to 2 mm. Higher values 448 

of rainfall amount are overestimated.  449 

 450 

Fig. 6. Non-exceedance curves of observed and disaggregated time series for station Wetze/Northeim, with a 451 

detailed look at the upper 15 % of non-exceedance curve in the upper left corner. The shaded areas represent the 452 

enveloping curves of all 80 realizations for each method. 453 

 454 

The underestimation of observed rainfall amounts in the range from 0 % to 35 % results from 455 

the resolution of the measuring instruments. Hence, the lowest observed rainfall value is 456 

0.1 mm. From the observed data it can be seen that these very small values represent one third 457 
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of all values. These values can be represented neither by the diversion nor by the uniform 458 

splitting method. The results for other stations look similar, so only station Wetze/Northeim is 459 

presented here. Molnar & Burlando (2005) found the same problem, with 48 % of all wet 460 

values smaller than the measuring accuracy of 0.1 mm for 10 minute data. This higher 461 

fraction may have resulted from additional disaggregation steps that are necessary to achieve 462 

the finer temporal resolution. To avoid this high occurrence of small values, a threshold could 463 

be introduced like e.g. the sampling resolution of a measurement device. However, this would 464 

require a complete new cascade generator with new parameters and will therefore be left for 465 

further research. Also, low intensity rainfall periods are not important from a practical point 466 

of view (Molnar & Burlando, 2005). It remains unclear if there are too many small values 467 

produced or if the accuracy of the measurement instrument is causing too many dry periods 468 

(Koutsoyiannis et al., 2003). 469 

Additionally, rainfall extremes of the disaggregated time series were analyzed. For an analysis 470 

of extreme values, long time series are necessary. Therefore the complete observation periods 471 

were used. For each year only the highest value is taken into account and empirical non-472 

exceedance curves are calculated using the plotting position after Weibull (1939). 473 

Fig. 7 shows the observed extreme values and the enveloping curves of 80 disaggregations for 474 

the diversion and uniform splitting approach for two stations. The observed extreme values 475 

are enveloped by both disaggregation methods over the whole spectrum. The diversion tends 476 

to underestimate observed extremes for non-exceedance probabilities by up to 80 %. In 477 

contrast, the uniform splitting tends to overestimate extreme values. The upper 20 % of 478 

extreme values of station Göttingen are well represented by the median of all 80 diversion 479 

realizations while the median of the uniform splitting tends to underestimate these extremes. 480 

For station Hannover-Langenhagen the situation is reversed. However, extremes are in the 481 
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range of the 80 disaggregations for both methods. The ranges of the diversion and uniform 482 

splitting are similar from between 0 % to 70 % non-exceedance probability. The maximum 483 

range of the diversion is approximately 3 times wider than for the range of the uniform 484 

splitting. 485 

In summary, the uniform splitting better reproduces basic event characteristics, the non-486 

exceedance curve of rainfall intensities and the representation of extreme values than does the 487 

diversion.  488 

 489 

Fig. 7. Non-exceedance curves of rainfall extreme values with empirical probability for station a) Göttingen (43 490 

years, 1951-2007 with missing values from 1981-1993) and b) Hannover-Langenhagen (36 years, 1959-2007 491 

with missing 1981-1992). The shaded areas represent the enveloping curves of all 80 realizations for each 492 

method, the solid line represents the median. 493 

 494 

Spatial rainfall characteristics 495 

The implementation of spatial consistence should conserve the time series structure and basic 496 

event characteristics generated by the cascade model. Due to the applied resampling 497 

procedure and its boundary conditions, neither the structure defined as the arrangement of wet 498 
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days with different position-volume-classes, nor the rainfall characteristics of Table 3, have 499 

been changed. 500 

To evaluate the implementation of spatial consistence, spatial rainfall characteristics 501 

(probability of occurrence, coefficient of correlation (k ≤ and > 4 mm) and continuity ratio) 502 

were analyzed. Since all of them are included in the objective function, a general 503 

improvement could be achieved. For this discussion, the term ‘observation cloud’ is 504 

introduced. The observation cloud represents all values computed from the observed values 505 

for each spatial characteristic. 506 

A comparison of spatial characteristics before and after using simulated annealing is shown in 507 

Fig. 8 for the one-step and the two-step approach. Values of the spatial characteristics are 508 

illustrated for observed (grey), disaggregated (blue) and disaggregated and resampled (red) 509 

time series. For the disaggregation, uniform splitting was applied. The overall aim of the 510 

simulated annealing is to implement spatial characteristics, so that after resampling, values 511 

should be in the cloud of observed values and show a dependence with distance. Reaching the 512 

regression line of observations is not necessarily essential, since it is only a supporting tool 513 

for the implementation of the characteristics in the objective function. For the annealing 514 

algorithm, 3 out of the 80 realizations were chosen at random. Simulated annealing was 515 

carried out 3 times each, so the data represents 9 data sets for the one-step approach and 27 516 

data sets for the two-step approach. 517 
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 518 

Fig. 8. Rainfall characteristics before (blue) and after (red) resampling of disaggregated time series using the 519 

one-step approach (line 1 – 6) and the two-step approach (line 7). The number of involved stations is increased 520 

by one in line 1 - 6. The added station in the one-step approach is marked by triangles, previously considered 521 

stations by circles. The grey circles represent the empirical values of the investigation area. For the two-step-522 

approach no differentiation is done. Additionally, the corresponding regression line is included. 523 

 524 

The values for the continuity ratio are within the cloud of observed values after the 525 

disaggregation and remain there after applying both resampling approaches. Omitting this 526 

characteristic from the objective function was also tested. Results showed that continuity ratio 527 

values worsened and moved outside of the observation cloud. Therefore this characteristic 528 

remained included. However, after the resampling, the values of the continuity ratio cover a 529 

wider range than before the resampling for each distance. This may be caused by the 530 

definition of the criterion, taking only station k with respect to station l into account, but not 531 

vice versa. However the continuity ratio of station l with respect to station k is different, since 532 
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other time steps are taken into account. Hence, continuity ratio Ck,l can be improved by 533 

simultaneous worsening of Cl,k. 534 

The probability of occurrence is lower than for observed time series after the disaggregation. 535 

With resampling of three stations, the probability values could be adjusted closer to the 536 

observed ones. If more than three stations are included in the resampling of the one-step 537 

approach, some of the probability values cannot be shifted closer to the observed values, 538 

while for the two-step approach almost all probabilities are within the cloud of observations. 539 

The advantage of the two-step approach with a smaller number of reference stations in the 540 

second step, is that it causes a higher degree of freedom and a better fit seems possible. 541 

For the coefficient of correlation (k > 4 mm), almost all values of the disaggregated time 542 

series are already within the observation cloud before applying the resampling algorithm. 543 

However after the resampling, all coefficients are within the observation cloud. Omitting this 544 

characteristic from the objective function was also investigated. Without this criterion, 545 

extremes of areal rainfall were overestimated (not shown here). Hence this rainfall 546 

characteristic was not omitted from the objective function. 547 

The coefficient of correlation (k ≤ 4 mm) is underestimated by the disaggregated time series. 548 

For all stations, the coefficients were shifted closer to the observed values by the resampling 549 

procedure. Using three stations leads to values comparable to the observations for the 550 

coefficient of correlation (k   4 mm). For eight stations, there are some values still below the 551 

observations for the one-step approach. This underestimation is not related to distance. For 552 

the two-step approach a higher number of underestimations can be identified. Since the two-553 

step approach has shown improvement for the probability of occurrence, the underestimation 554 

must be caused by the missing information of rainfall amount of stations from U1 and U1-555 

others during the resampling process. 556 
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For further investigation, the areal rainfall of the Aller-Leine river basin and the Upper-Leine 557 

subcatchment were analyzed: The non-exceedance curves of areal rainfall intensities 558 

≥ 0.1 mm, for both the diversion and the uniform splitting method and before and after the 559 

annealing, are shown in Fig. 9 for the Upper Leine subcatchment and in Fig. 10 for the Aller-560 

Leine river basin (see Fig. 5 for an overview of the data sets). The shape of the non-561 

exceedance curves, taking into account lower rainfall intensities, show only small variations 562 

below 0.1 mm and are not illustrated here. 563 

 564 

Fig. 9. Non-exceedance curves of all areal rainfall intensities ≥ 0.1 mm for the Upper Leine catchment for 565 

observed and disaggregated time series before and after using simulated annealing – for a) diversion (Div) and b) 566 

uniform splitting (US). The shaded areas represent the enveloping curves of all 9 realizations for each method. 567 
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 568 

Fig. 10. Non-exceedance curves of all areal rainfall intensities ≥ 0.1 mm for the Aller-Leine river basin for 569 

observed and disaggregated time series before and after using simulated annealing – for a) diversion (Div) and b) 570 

uniform splitting (US). The shaded areas represent the enveloping curves of the data sets used for each method. 571 

 572 

Using the diversion method for disaggregation of rainfall without the subsequent annealing 573 

procedure leads to an underestimation of areal rainfall for the whole rainfall volume spectrum. 574 

After resampling, the non-exceedance curve is closer to the one from the observations for 575 

non-exceedance probabilities higher than 20 %. For smaller values, only slight changes can be 576 

found after the resampling. 577 
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Uniform splitting also results in a non-exceedance curve which underestimates the 578 

observations for non-exceedance probabilities greater than 30 %. However, these 579 

underestimations are smaller than in comparison to the diversion method. After the 580 

application of the annealing algorithm, observed areal rainfall from 60 % (representing 581 

0.4 mm) up to 90 % (1.3 mm) is within the range of the simulated realisations. For other non-582 

exceedance probabilities, areal rainfall is slightly overestimated after the resampling. 583 

For the Aller-Leine river basin, the diversion leads to an underestimation of rainfall volume, 584 

again for the whole spectrum (except for the highest values). The non-exceedance curve is 585 

underestimated, regardless of whether the resampling algorithm is applied or not. It should be 586 

mentioned that when taking into account areal rainfall intensities smaller than 0.1 mm, non-587 

exceedance probabilities are overestimated (not shown here). This is contradictory to the 588 

underestimation of areal rainfall that was estimated without implementing spatial consistence. 589 

The reason for this contrast is the overestimated fraction in the time series of wet intervals of 590 

very small intensity generated by the diversion. With an increasing number of stations, the 591 

probability of small rainfall events occurring simultaneously also increases.  592 

For the uniform splitting, a better visual fit is achieved for all data sets than for the diversion. 593 

All three data sets have similar curves of non-exceedance probability below approximately 594 

20 %. For non-exceedance probabilities in the range between 20 % (about 0.15 mm) and 90 % 595 

(1.1 mm), the two-step approach shows the best fit to the observed areal rainfalls. For rainfall 596 

intensities greater than 1.5 mm (~95 % non-exceedance probability), the ranges of all three 597 

data sets unify to an identical curve. 598 

 599 

 600 

 601 
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Summary and Conclusions 602 

In this study two novelties were presented. First, a modified multiplicative random cascade 603 

model (called uniform splitting) is introduced, which is parameter parsimonious and able to 604 

disaggregate daily rainfall values to hourly values. Modifications to this model are the 605 

application of a branching number b = 3 in the first disaggregation step similar to Lisniak et 606 

al. (2013) and the introduction of an upper quantile class for daily rainfall amounts (>q0.998). 607 

The performance of the model was compared with observed values from the Aller-Leine 608 

catchment in Lower Saxony (Germany) and another modified cascade model, introduced by 609 

Güntner et al. (2001). Different criteria regarding time series statistics, the non-exceedance 610 

curve of the rainfall intensities and extreme values were taken into account for the evaluation. 611 

The following conclusions can be drawn: 612 

1. The uniform splitting provides better results than the diversion for basic event 613 

characteristics and the non-exceedance curve of rainfall intensities. 614 

2. The statistics of the observed time series could be reproduced well by the uniform 615 

splitting. Slight underestimations of fraction of dry intervals, wet and dry spell 616 

duration (3 %, 12 % and 6 %) and an overestimation of the average rainfall intensity 617 

(4 %), can be identified.  618 

3. The non-exceedance curve of the rainfall intensities generated by the uniform splitting 619 

shows a good visual fit between 35 % and 93 %. Rainfall for higher non-exceedance 620 

probabilities is slightly overestimated.  621 

4. Observed extreme values can be reproduced reasonably well by the uniform splitting. 622 

All observed values are enveloped by the range of all 80 disaggregation runs. The 623 

median shows slight overestimations for some stations. 624 
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For all disaggregated time series, one third of all rainfall intensities are smaller than the 625 

lowest observed rainfall intensity. This conforms to Molnar & Burlando (2005), who found a 626 

similar problem, with 48 % of all wet values smaller than the measuring accuracy. 627 

It should be mentioned, that the autocorrelation of the time series cannot be reproduced by the 628 

micro-canonical cascade model (Lombardo et al., 2012). This remains a problem that has not 629 

been solved yet for random cascades to the authors’ knowledge. However, with the main 630 

interest in the representation of event characteristics and duration curves, this disadvantage 631 

was taken into account (see also the discussion in Lisniak et al., 2013). 632 

The second novelty of this study is the implementation of spatial consistence subsequent to 633 

the disaggregation procedure. The essential findings are: 634 

5. All bivariate characteristics could be improved by the annealing algorithm.  635 

6. The resampling improved all non-exceedance curves of areal rainfall, independent of 636 

the chosen disaggregation method and the catchment. The annealing algorithm 637 

reduces over- and underestimations. 638 

7. Time series based on the uniform splitting show a higher capability to implement 639 

spatial consistence than the time series based on the diversion. 640 

For the resampling, a one-step and a two-step approach were investigated in the Aller-Leine 641 

river basin. The resulting conclusions are: 642 

8. The number of stations limits a good reproduction for probability of occurrence in the 643 

one-step and for the coefficient of correlation (k ≤ 4 mm) in the two-step approach. 644 

9. The two-step approach yields a slightly better representation of the non-exceedance 645 

curve than the one-step approach. 646 

It should be mentioned that the introduced uniform splitting uses unbounded, scale-647 

independent parameters. However, the overall performance of the uniform splitting was better 648 
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in comparison to the diversion for the investigated time series. Thus, it should be applied to 649 

different climate regions to test its transferability and to prove if this statement holds.  650 

The annealing algorithm shows potential to improve spatial characteristics and hence for 651 

implementing spatial consistence. Next steps for a better representation of spatial rainfall 652 

could be the investigation of additional objective criteria like e.g. the log-odd ratio (Mehrotra 653 

et al., 2006) in the objective function or the introduction of multivariate criteria beside the 654 

bivariate ones. Further investigations should also be done for smaller catchments, since the 655 

temporal connection of rainfall occurrence and intensity is important in view of rainfall-656 

runoff-modeling and other applications. An adaption of the simulated annealing for other 657 

disaggregation models seems possible with little change in the algorithm concerning the 658 

structure of the time series which should be preserved. For a multivariate resampling the 659 

annealing algorithm can be modified, e.g. for each resampling of relative diurnal cycles two 660 

stations are drawn randomly beforehand. This simultaneous resampling would increase the 661 

degrees of freedom in comparison to the sequential resampling. 662 

Generally, it seems possible to generate high-resolution time series with spatial consistence of 663 

either observed daily values or climate projected rainfall data for different applications 664 

through use of the uniform splitting method in combination with the subsequent annealing 665 

algorithm. 666 
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